55: GreyBeards storage and system yearend review with Ray & Howard

In this episode, the Greybeards discuss the year in systems and storage. This year we kick off the discussion with a long running IT trend which has taken off over the last couple of years. That is, recently the industry has taken to buying pre-built appliances rather than building them from the ground up.

We can see this in all the hyper-converged solutions available  today but it goes even deeper than that. It seems to have started with the trend in organizations to get by with less man-women power.

This led to a desire to purchase pre-buit software applications and now, appliances rather than build from parts. It just takes to long to build and lead architects have better things to do with their time than checking compatibility lists, testing and verifying that hardware works properly with software. The pre-built appliances are good enough and doing it yourself doesn’t really provide that much of an advantage over the pre-built solutions.

Next, we see the coming systems using NVMe over Fabric storage systems as sort of a countertrend to the previous one. Here we see some customers paying well for special purpose hardware with blazing speed that takes time and effort to get working right, but the advantages are significant. Both Howard and I were at the Excelero SFD12 event and it blew us away. Howard also attended the E8 Storage SFD14 event which was another example along a similar vein.

Finally, the last trend we discussed was the rise of 3D TLC and the absence of 3DX and other storage class memory (SCM) technologies to make a dent in the marketplace. 3D TLC NAND is coming out of just about every fab these days and resulting in huge (but costly) SSDs, in the multi-TB range.  Combine these with NVMe interfaces and you have msec access to almost a PB of storage without breaking a sweat.

The missing 3DX SCM tsunami some of us predicted is mainly due to the difficulties in bringing new fab technologies to market. We saw some of this in the stumbling with 3D NAND but the transition to 3DX and other SCM technologies is a much bigger change to new processes and technology. We all believe it will get there someday but for the moment, the industry just needs to wait until the fabs get their yields up.

The podcast runs over 44 minutes. Howard and I could talk for hours on what’s happening in IT today. Listen to the podcast to learn more.

Howard Marks is the Founder and Chief Scientist of howardmarksDeepStorage, a prominent blogger at Deep Storage Blog and can be found on twitter @DeepStorageNet.

 

Ray Lucchesi is the President and Founder of Silverton Consulting, a prominent blogger at RayOnStorage.com, and can be found on twitter @RayLucchesi.

54: GreyBeards talk scale-out secondary storage with Jonathan Howard, Dir. Tech. Alliances at Commvault

This month we talk scale-out secondary storage with Jonathan Howard,  Director of Technical Alliances at Commvault.  Both Howard and I attended Commvault GO2017 for Tech Field Day, this past month in Washington DC. We had an interesting overview of their Hyperscale secondary storage solution and Jonathan was the one answering most of our questions, so we thought he would make an good guest for our podcast.

Commvault has been providing data protection solutions for a long time, using anyone’s secondary storag, but recently they have released a software defined, scale-out secondary storage solution that runs their software with a clustered file system.

Hyperscale secondary storage

They call their solution, Hyperscale secondary storage and it’s available in both an hardware-software appliance as well as software only configuration on compatible off the shelf commercial hardware. Hyperscale uses the Red Hat Gluster cluster file system and together with the Commvault Data Platform provides a highly scaleable, secondary storage cluster that can meet anyone’s secondary storage needs while providing high availability and high throughput performance.

Commvault’s Hyperscale secondary storage system operates onprem in customer data centers. Hyperscale uses flash storage for system metadata but most secondary storage resides on local server disk.

Combined with Commvault Data Platform

With the sophistication of Commvault Data Platform one can have all the capabilities of a standalone Commvault environment with software defined storage. This allows just about any RTO/RPO needed by today’s enterprise and includes Live Sync secondary storage replication,  Onprem IntelliSnap for on storage snapshot management, Live Mount for instant recovery using secondary storage directly  to boot your VMs without having to wait for data recovery.  , and all the other recovery sophistication available from Commvault.

Hyperscale storage is capable of doing up to 5 Live Mount recoveries simultaneously per node without a problem but more are possible depending on performance requirements.

We also talked about Commvault’s cloud secondary storage solution which can make use of AWS S3 storage to hold backups.

Commvault’s organic growth

Most of the other data protection companies have came about through mergers, acquisitions or spinoffs. Commvault has continued along, enhancing their solution while bashing everything on an underlying centralized metadata database.  So their codebase was grown from the bottom up and supports pretty much any and all data protection requirements.

The podcast runs ~50 minutes. Jonathan was very knowledgeable about the technology and was great to talk with. Listen to the podcast to learn more.

Jonathan Howard, Director, Technical and Engineering Alliances, Commvault

Jonathan Howard is a Director, Technology & Engineering Alliances for Commvault. A 20-year veteran of the IT industry, Jonathan has worked at Commvault for the past 8 years in various field, product management, and now alliance facing roles.

In his present role with Alliances, Jonathan works with business and technology leaders to design and create numerous joint solutions that have empowered Commvault alliance partners to create and deliver their own new customer solutions.

53: GreyBeards talk MAMR and future disk with Lenny Sharp, Sr. Dir. Product Management, WDC

This month we talk new disk technology with Lenny Sharp, Senior Director of Product Management, responsible for enterprise disk with Western Digital Corp. (WDC). WDC recently announced their future disk offerings will be based on a new disk recording technology, called MAMR or microwave assisted magnetic recording.

Over the last decade or so the disk industry has been investing in HAMR or heat assisted magnetic recording as the next recording innovation. So, MAMR is a significant departure but appears well worth it.

WDC is arguably the leading supplier of HDD and one of the leading SSD suppliers to the industry today. Any departure from industry technology roadmaps for WDC is big news.

WDC is banking on MAMR technology to continue to offer capacity disk (for big data) at prices that are 10X below the price of flash storage for the foreseeable future. If they and the rest of the disk industry can deliver on that promise then there should be a substantial market for capacity disk for the next decade or so.

What’s  MAMR?

HAMR uses lasers to heat up a media spot being recorded. This boost in energy helps reduce the magnetic threshold of the grains inside the media and allowed them to be written or change state. Once that energy was removed, the data state on media would persist and could be read multiple times without error.

MAMR uses microwaves to add similar energy to the spot being written on disk media. MAMR doesn’t actually heat up the spot with microwaves, but it does add elector-magnetic energy to the spot being written, which has the same affect of reducing the threshold for writing the media.  I wrote a recent blog post about MAMR technology describing the technology in more detail

HAMR heated the media spot from 400C to 700C, which was potentially reduces disk reliability. MAMR, because it doesn’t heat the disk anymore than normal operations, should not impact disk reliability.

Also MAMR can use pretty much the same disk substrate used in enterprise disks today and be fabricated using much the same manufacturing lines used for PMR (perpendicular magnetic recording) heads, today.

Disk densities

MAMR should allow the industry to get to ~4.5Tb/sqin. Current PMR technology will probably max out at 1.0 to 1.3Tb/sqin.  PMR density growth has flatlined (6-7% per year) recently, but MAMR should put the disk industry back on a 15% density growth/year. The new MAMR disks will be sampling for enterprise customer in 2018 and in production by 2019.

As for how far MAMR will take disk, WDC said we can expect a 40TB disk device (using multiple platters) by 2025 and Lenny said perhaps double that eventually.

We ended our discussion with Lenny on WDC and other disk vendor moves outside of the device level. Over time, IT use of disks have changed and the disk vendor’s seem to believe the best way to address this transition is to look beyond disk/SSD devices and towards manufacturing storage shelves and potentially even systems!? We’ll need to wait and see the dust settle on these moves.

The podcast runs ~45 minutes. Lenny was very knowledgeable about current and future disk technology and seems to have been around the disk industry forever.  He’s got an insider’s view of disk technology, IT’s use of disk and storage market dynamics. Both  Howard and I enjoyed our time with him.   Listen to the podcast to learn more.

Lenny Sharp, Sr. Dir. Product Management, WDC

Lenny Sharp serves as Western Digital’s Sr. Director of Enterprise HDD product line management and planning. He has over 30 years of experience in high technology and storage. Sharp joined HGST in 2009, iniIally responsible for enterprise SSD.
He has also managed client HDD and spent four years in Japan, working closely with the development team and APAC customers.
Previously, he was responsible for managing systems, software, storage and semiconductors for companies including Dell, Philips, Western Digital and Maxtor (since acquired by Seagate).

52: GreyBeards talk software defined storage with Kiran Sreenivasamurthy, VP Product Management, Maxta

This month we talk with an old friend from Storage Field Day 7 (videos), Kiran Sreenivasamurthy, VP of Product Management for Maxta. Maxta has a software defined storage solution which currently works on VMware vSphere, Red Hat Virtualization and KVM to supply shared, scale out storage and HCI solutions for enterprises across the world.

Maxta is similar to VMware’s vSAN software defined storage whose licenses can be transferred from one server to another, as you upgrade your data center over time. As software defined storage, Maxta runs on any standard Intel X86 hardware. Indeed, Maxta has one customer running two Super Micro servers and one Cisco server in the same cluster.

Maxta advantages

One item that makes Maxta unique is all of its storage properties are assignable at a VM granularity. That is,  replication, deduplication, compression and even blocksize can all be enabled/set at the VMDK-VM level.  This could be useful for environments supporting diverse applications, such as having a 64K block size for Microsoft Exchange and 4K block size for web servers.

Another advantage is their multi-hypervisor support. Maxta’s support for RH Virtualization, VMware and KVM offers the unique ability to migrate storage and even powered off VMs, from one hypervisor to another. Maxta’s file system is the same for both VMware and KVM clusters.

Maxta clusters

Their software must be licensed on all servers in a vSphere or KVM cluster with access to Maxta storage. The minimum Maxta cluster size is 3 nodes for 2-way replication and 5 nodes for 3-way replication.  Most Maxta systems run on 8 to 12 server node clusters. But Maxta has installations with 20 to 24 nodes in customer deployments.

Maxta supports SSD only as well as SSD-disk hybrid storage. And SSDs can be NVMe as well as SATA SSD storage. In hybrid configurations, Maxta SSDs are used as read and write back caches for disk storage.

Maxta supports compute only nodes, compute-storage nodes and witness only nodes (node with 1 storage device). In addition, besides heterogeneous server support, Maxta clusters can have nodes with different storage capacities. Maxta will optimize VM data placement to balance IO activity across heterogeneous nodes.

Maxta provides a vCenter plugin so VMware admins can manage and monitor their storage inside vSphere environment. Maxta also offers a Cloud Connect MX which is a cloud based system allowing for management of all your Maxta clusters through out an enterprise, wherever they reside.

Even HCI, through partners

For customers wanting an HCI solution, Maxta partners can supply pre-tested, HCI appliances or can configure Maxta software with servers at customer data centers. Maxta has done well OEMing their solution, and one significant success has been their OEM deal with Lenovo in China and East Asia, where they sell HCI appliances with Maxta software.

Maxta has also found success with managed service providers (that want to deploy the software on their own hardware), and SME & ROBO environments. Also Maxta seems to be doing very well in Latin America as well as previously mentioned China.

The podcast runs ~42 minutes. Kiran is knowledgeable individual and has worked with some of the leading storage companies of the last two decades.  Listen to the podcast to learn more.

Kiran Sreenivasamurthy, VP Product Management, Maxta

Kiran Sreenivasamurthy is the Vice President of Product Management for Maxta Inc. He has developed and managed storage hardware and software products for more than 20 years with leading storage companies and startups including HP 3PAR, NetApp and Mendocino Software.

Kiran Manages all aspects of Maxta’s hyperconvergence product portfolio from inception through revenue.

51: GreyBeards talk hyper convergence with Lee Caswell, VP Product, Storage & Availability BU, VMware

Sponsored by:

VMware

In this episode we talk with Lee Caswell (@LeeCaswell), Vice President of Product, Storage and Availability Business Unit, VMware.  This is the second time Lee’s been on our show, the previous one back in April of last year when he was with his prior employer. Lee’s been at VMware for a little over a year now and has helped lead some significant changes in their HCI offering, vSAN.

VMware vSAN/HCI business

Many customers struggle to modernize their data centers with funding being the primary issue. This is very similar to what happened in the early 2000s as customers started virtualizing servers and consolidating storage. But today, there’s a new option, server based/software defined storage like VMware’s vSAN, which can be deployed for little expense and grown incrementally as needed. VMware’s vSAN customer base is currently growing by 150% CAGR, and VMware is adding over 100 new vSAN customers a week.

Many companies say they offer HCI, but few have adopted the software-only business model this entails. The transition from a hardware-software, appliance-based business model to a software-only business model is difficult and means a move from a high revenue-lower margin business to a lower revenue-higher margin business. VMware, from its very beginnings, has built a sustainable software-only business model that extends to vSAN today.

The software business model means that VMware can partner easily with a wide variety of server OEM partners to supply vSAN ReadyNodes that are pre-certified and jointly supported in the field. There are currently 14 server partners for vSAN ReadyNodes. In addition, VMware has co-designed the VxRail HCI Appliance with Dell EMC, which adds integrated life-cycle management as well as Dell EMC data protection software licenses.

As a result, customers can adopt vSAN as a build or a buy option for on-prem use and can also leverage vSAN in the cloud from a variety of cloud providers, including AWS very soon. It’s the software-only business model that sets the stage for this common data management across the hybrid cloud.

VMware vSAN software defined storage (SDS)

The advent of Intel Xeon processors and plentiful, relatively cheap SSD storage has made vSAN an easy storage solution for most virtualized data centers today. SSDs removed any performance concerns that customers had with hybrid HCI configurations. And with Intel’s latest Xeon Scalable processors, there’s more than enough power to handle both application compute and storage compute workloads.

From Lee’s perspective, there’s still a place for traditional SAN storage, but he sees it more for cold storage that is scaled independently from servers or for bare metal/non-virtualized storage environments. But for everyone else using virtualized data centers, they really need to give vSAN a look.

Storage vendors shifting sales

It used to be that major storage vendor sales teams would lead with hardware appliance storage solutions and then move to HCI when pushed. The problem was that a typical SAN storage sale takes 9 months to complete and then 3 years of limited additional sales.

To address this, some vendors have taken the approach where they lead with HCI and only move to legacy storage when it’s a better fit. With VMware vSAN, it’s a quicker sales cycle than legacy storage because HCI costs less up front and there’s no need to buy the final storage configuration with the first purchase. VMware vSAN HCI can grow as the customer applications needs dictate, generating additional incremental sales over time.

VMware vSAN in AWS

Recently, VMware has announced VMware Cloud in AWS.What this means is that you can have vSAN storage operating in an AWS cloud just like you would on-prem. In this case, workloads could migrate from cloud to on-prem and back again with almost no changes. How the data gets from on-prem to cloud is another question.

Also the pricing model for VMware Cloud in AWS moves to a consumption based model, where you pay for just what you use on a monthly basis. This way VMware Cloud in AWS and vSAN is billed monthly, consistent with other AWS offerings.

VMware vs. Microsoft on cloud

There’s a subtle difference in how Microsoft and VMware are adopting cloud. VMware came from an infrastructure platform and is now implementing their infrastructure on cloud. Microsoft started as a development platform and is taking their cloud development platform/stack and bringing it to on-prem.

It’s really two different philosophies in action. We now see VMware doing more for the development community with vSphere Integrated Containers (VIC), Docker Containers, Kubernetes, and Pivotal Cloud foundry. Meanwhile Microsoft is looking to implement the Azure stack for on-prem environments, and they are focusing more on infrastructure. In the end, enterprises will have terrific choices as the software defined data center frees up customers dollars and management time.

The podcast runs ~25 minutes. Lee is a very knowledgeable individual and although he doesn’t qualify as a Greybeard (just yet), he has been in and around the data center and flash storage environments throughout most of his career. From his diverse history, Lee has developed a very business like perspective on data center and storage technologies and it’s always a pleasure talking with him.  Listen to the podcast to learn more.

Lee Caswell, V.P. of Product, Storage & Availability Business Unit, VMware

Lee Caswell leads the VMware storage marketing team driving vSAN products, partnerships, and integrations. Lee joined VMware in 2016 and has extensive experience in executive leadership within the storage, flash and virtualization markets.

Prior to VMware, Lee was vice president of Marketing at NetApp and vice president of Solution Marketing at Fusion-IO (now SanDisk). Lee was a founding member of Pivot3, a company widely considered to be the founder of hyper-converged systems, where he served as the CEO and CMO. Earlier in his career, Lee held marketing leadership positions at Adaptec, and SEEQ Technology, a pioneer in non-volatile memory. He started his career at General Electric in Corporate Consulting.

Lee holds a bachelor of arts degree in economics from Carleton College and a master of business administration degree from Dartmouth College. Lee is a New York native and has lived in northern California for many years. He and his wife live in Palo Alto and have two children. In his spare time Lee enjoys cycling, playing guitar, and hiking the local hills.